APAV-K | 3/4", 1", 2" Kinetic Air Valve

General Description

APAV-K Series Kinetic Air Valves are the valves that operate with line pressure. APAV-K Series Kinetic Air Valves are the air valves that provide the venting of the air during filling and preventing of vacuum by taking air into the installation during emptying.

Applications

- Pump Systems
- Filter Systems

Features

APAV-K Series Kinetic Air Valve has a float with the gasket.

- The float is bearing from the bottom body for $3 / 4$ " and 1 ", it is bearing from the body
- APAV-K Series Kinetic Air Valve vents air and sucks effectively due to its effective size of orifice
- Even on low pressure applications, it shut off itself as drip-tight due to its specific float material
- It provides ease of use due to its simple and ergonomic design
- APAV-K Series Kinetic Air Valve is a durable valve on heavy duty conditions and field applications due to it has fibre glass reinforced material
- It is resistant to corrosion and chemical elements it is material

Operation Principle

The float in the APAV-K kinetic air valve, depending on the water level, moves up/down direction. When the water level rises, the float will be on the top point and the air valve will close fully tightness. When the water level is low, the float will return to its original position.

Air and water move together when filling the line. The rising air is discharged from the air valve and closes when the water level rises. The air valve prevents vacuuming thanks to the air entering the system from the air valve.

Specifications

Connection Size	3/4", 1", 2" BSPP (NPT option also available)
Maximum Pressure	10 Bar / 145 PSI
Air Valve Type	Kinetic
Material	- Body: Reinforced Polyamide (GFR30) - Upper Body: Reinforced Polyamide (GFR30) - Float: Foam Polypropylene - Sealing Gasket: EPDM

2"
$3 / 4 "-1$ "

Dimensions	W $(\mathbf{m m})$	\mathbf{H} $(\mathbf{m m})$
$3^{3 / \prime \prime}($ DN20)	67	110
1' $^{\prime \prime}$ (DN25)	67	110
$2^{\prime \prime}$ (DN50)	88	170

